The theory that an asteroid impact killed off the dinosaurs 66 million
years ago is well accepted, but one puzzle is why another global
catastrophe -- the huge, million-year eruption of the Deccan Traps flood
basalts in India -- occurred at the same time. Geologists now argue
this is not a coincidence. The impact probably rang Earth like a bell, reigniting an underground magma plume and generating the largest lava flows on Earth.
Specifically, the researchers argue that the impact likely triggered
most of the immense eruptions of lava in India known as the Deccan
Traps, explaining the "uncomfortably close" coincidence between the
Deccan Traps eruptions and the impact, which has always cast doubt on
the theory that the asteroid was the sole cause of the end-Cretaceous
mass extinction.
"If you try to explain why the largest impact we know of in the last
billion years happened within 100,000 years of these massive lava flows
at Deccan ... the chances of that occurring at random are minuscule,"
said team leader Mark Richards, UC Berkeley professor of earth and
planetary science. "It's not a very credible coincidence."
Richards and his colleagues marshal evidence for their theory that
the impact reignited the Deccan flood lavas in a paper to be published
in The Geological Society of America Bulletin, available online today (April 30) in advance of publication.
While the Deccan lava flows, which started before the impact but
erupted for several hundred thousand years after re-ignition, probably
spewed immense amounts of carbon dioxide and other noxious,
climate-modifying gases into the atmosphere, it's still unclear if this
contributed to the demise of most of life on Earth at the end of the Age
of Dinosaurs, Richards said.
"This connection between the impact and the Deccan lava flows is a
great story and might even be true, but it doesn't yet take us closer to
understanding what actually killed the dinosaurs and the 'forams,'" he
said, referring to tiny sea creatures called foraminifera, many of which
disappeared from the fossil record virtually overnight at the boundary
between the Cretaceous and Tertiary periods, called the KT boundary. The
disappearance of the landscape-dominating dinosaurs is widely credited
with ushering in the age of mammals, eventually including humans.
He stresses that his proposal differs from an earlier hypothesis that
the energy of the impact was focused around Earth to a spot directly
opposite, or antipodal, to the impact, triggering the eruption of the
Deccan Traps. The "antipodal focusing" theory died when the impact
crater, called Chicxulub, was found off the Yucatán coast of Mexico,
which is about 5,000 kilometers from the antipode of the Deccan traps.
Flood basalts
Richards proposed in 1989 that plumes of hot rock, called "plume
heads," rise through Earth's mantle every 20-30 million years and
generate huge lava flows, called flood basalts, like the Deccan Traps.
It struck him as more than coincidence that the last four of the six
known mass extinctions of life occurred at the same time as one of these
massive eruptions.
"Paul Renne's group at Berkeley showed years ago that the Central
Atlantic Magmatic Province is associated with the mass extinction at the
Triassic/Jurassic boundary 200 million years ago, and the Siberian
Traps are associated with the end Permian extinction 250 million years
ago, and now we also know that a big volcanic eruption in China called
the Emeishan Traps is associated with the end-Guadalupian extinction 260
million years ago," Richards said. "Then you have the Deccan eruptions
-- including the largest mapped lava flows on Earth -- occurring 66
million years ago coincident with the KT mass extinction. So what really
happened at the KT boundary?"
Richards teamed up with experts in many areas to try to discover
faults with his radical idea that the impact triggered the Deccan
eruptions, but instead came up with supporting evidence. Renne, a
professor in residence in the UC Berkeley Department of Earth and
Planetary Science and director of the Berkeley Geochronology Center,
re-dated the asteroid impact and mass extinction two years ago and found
them essentially simultaneous, but also within approximately 100,000
years of the largest Deccan eruptions, referred to as the Wai subgroup
flows, which produced about 70 percent of the lavas that now stretch
across the Indian subcontinent from Mumbai to Kolkata.
Michael Manga, a professor in the same department, has shown over the
past decade that large earthquakes -- equivalent to Japan's 9.0 Tohoku
quake in 2011 -- can trigger nearby volcanic eruptions. Richards
calculates that the asteroid that created the Chicxulub crater might
have generated the equivalent of a magnitude 9 or larger earthquake
everywhere on Earth, sufficient to ignite the Deccan flood basalts and
perhaps eruptions many places around the globe, including at mid-ocean
ridges.
"It's inconceivable that the impact could have melted a whole lot of
rock away from the impact site itself, but if you had a system that
already had magma and you gave it a little extra kick, it could produce a
big eruption," Manga said.
Similarly, Deccan lava from before the impact is chemically different
from that after the impact, indicating a faster rise to the surface
after the impact, while the pattern of dikes from which the supercharged
lava flowed -- "like cracks in a soufflé," Renne said -- are more
randomly oriented post-impact.
"There is a profound break in the style of eruptions and the volume
and composition of the eruptions," said Renne. "The whole question is,
'Is that discontinuity synchronous with the impact?'"
Reawakened volcanism
Richards, Renne and graduate student Courtney Sprain, along with
Deccan volcanology experts Steven Self and Loÿc Vanderkluysen, visited
India in April 2014 to obtain lava samples for dating, and noticed that
there are pronounced weathering surfaces, or terraces, marking the onset
of the huge Wai subgroup flows. Geological evidence suggests that these
terraces may signal a period of quiescence in Deccan volcanism prior to
the Chicxulub impact. Apparently never before noticed, these terraces
are part of the western Ghats, a mountain chain named after the Hindu
word for steps.
"This was an existing massive volcanic system that had been there
probably several million years, and the impact gave this thing a shake
and it mobilized a huge amount of magma over a short amount of time,"
Richards said. "The beauty of this theory is that it is very testable,
because it predicts that you should have the impact and the beginning of
the extinction, and within 100,000 years or so you should have these
massive eruptions coming out, which is about how long it might take for
the magma to reach the surface."
This story is taken from Science Daily
No comments:
Post a Comment