Geologists have tapped water in surface rocks to show how magma forms
deep underground and produces explosive volcanoes in the Cascade Range.
"Water is a key player," says Paul J. Wallace, a professor in the
UO's Department of Geological Sciences and coauthor of a paper in the
May issue of Nature Geoscience. "It's important not just for
understanding how you make magma and volcanoes, but also because the big
volcanoes that we have in the Cascades -- like Mount Lassen and Mount
St. Helens -- tend to erupt explosively, in part because they have lots
of water."
A five-member team, led by UO doctoral student Kristina J. Walowski,
methodically examined water and other elements contained in olivine-rich
basalt samples that were gathered from cinder cone volcanoes that
surround Lassen Peak in Northern California, at the southern edge of the
Cascade chain.
The discovery helps solve a puzzle about plate tectonics and Earth's
deep water cycle beneath the Pacific Ring of Fire, which scientists
began studying in the 1960s to understand the region's propensity for
big earthquakes and explosive volcanoes. The ring stretches from New
Zealand, along the eastern edge of Asia, north across the Aleutian
Islands of Alaska and south along the coast of North and South America.
It contains more than 75 percent of the planet's volcanoes.
To understand how water affects subduction of the oceanic plate, in
which layers of different rock types sink into the mantle, the UO team
studied hydrogen isotopes in water contained in tiny blobs of glass
trapped in olivine crystals in basalt.
To do so, the team used equipment in Wallace's lab, CAMCOR, the
Carnegie Institution in Washington, D.C., and a lab at Oregon State
University. CAMCOR is UO's Advanced Materials Characterization in
Oregon, a high-tech extension service located in the underground Lorry
I. Lokey Laboratories.
Next, the team fed data gained from the rocks into a complex computer
model developed by co-author Ikudo Wada, then of Japan's Tohoku
University. She has since joined the University of Minnesota.
That combination opened a window on how rising temperatures during
subduction drive water out of different parts of the subducted oceanic
crust, Walowski said. Water migrates upwards and causes the top of the
subducted oceanic crust to melt, producing magma beneath the Cascade
volcanoes.
The key part of the study, Wallace said, involved hydrogen isotopes.
"Most of the hydrogen in water contains a single proton," he said. "But
there's also a heavy isotope, deuterium, which has a neutron in addition
to the proton. It is important to measure the ratio of the two
isotopes. We use this ratio as a thermometer, or probe, to study what's
happening deep inside the earth."
"Melting of the subducting oceanic crust and the mantle rock above it
would not be possible without the addition of water," Walowski said.
"Once the melts reach the surface, the water can directly affect the
explosiveness of magma. However, evidence for this information is lost
to the atmosphere during violent eruptions."
This story is taken from Science Daily
No comments:
Post a Comment